The conserved transmembrane RING finger protein PLR-1 downregulates Wnt signaling by reducing Frizzled, Ror and Ryk cell-surface levels in C. elegans.

نویسندگان

  • Laura L Moffat
  • Ryan E Robinson
  • Anastasia Bakoulis
  • Scott G Clark
چکیده

Wnts control a wide range of essential developmental processes, including cell fate specification, axon guidance and anteroposterior neuronal polarization. We identified a conserved transmembrane RING finger protein, PLR-1, that governs the response to Wnts by lowering cell-surface levels of the Frizzled family of Wnt receptors in Caenorhabditis elegans. Loss of PLR-1 activity in the neuron AVG causes its anteroposterior polarity to be symmetric or reversed because signaling by the Wnts CWN-1 and CWN-2 are inappropriately activated, whereas ectopic PLR-1 expression blocks Wnt signaling and target gene expression. Frizzleds are enriched at the cell surface; however, when PLR-1 and Frizzled are co-expressed, Frizzled is not detected at the surface but instead is colocalized with PLR-1 in endosomes. The Frizzled cysteine-rich domain (CRD) and invariant second intracellular loop lysine are crucial for PLR-1 downregulation. The PLR-1 RING finger and protease-associated (PA) domain are essential for activity. In a Frizzled-dependent manner, PLR-1 reduces surface levels of the Wnt receptors CAM-1/Ror and LIN-18/Ryk. PLR-1 is a homolog of the mammalian transmembrane E3 ubiquitin ligases RNF43 and ZNRF3, which control Frizzled surface levels in an R-spondin-sensitive manner. We propose that PLR-1 downregulates Wnt receptor surface levels via lysine ubiquitylation of Frizzled to coordinate spatial and temporal responses to Wnts during neuronal development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wnt-Ror signaling to SIA and SIB neurons directs anterior axon guidance and nerve ring placement in C. elegans.

Wnt signaling through Frizzled proteins guides posterior cells and axons in C. elegans into different spatial domains. Here we demonstrate an essential role for Wnt signaling through Ror tyrosine kinase homologs in the most prominent anterior neuropil, the nerve ring. A genetic screen uncovered cwn-2, the C. elegans homolog of Wnt5, as a regulator of nerve ring placement. In cwn-2 mutants, all ...

متن کامل

The C. elegans Chp/Wrch Ortholog CHW-1 Contributes to LIN-18/Ryk and LIN-17/Frizzled Signaling in Cell Polarity

Wnt signaling controls various aspects of developmental and cell biology, as well as contributing to certain cancers. Expression of the human Rho family small GTPase Wrch/RhoU is regulated by Wnt signaling, and Wrch and its paralog Chp/RhoV are both implicated in oncogenic transformation and regulation of cytoskeletal dynamics. We performed developmental genetic analysis of the single Caenorhab...

متن کامل

p21-activated kinase interacts with Wnt signaling to regulate tissue polarity and gene expression.

Wnt signaling is mediated by three classes of receptors, Frizzled, Ryk, and Ror. In Caenorhabditis elegans, Wnt signaling regulates the anterior/posterior polarity of the P7.p vulval lineage, and mutations in lin-17/Frizzled cause loss or reversal of P7.p lineage polarity. We found that pak-1/Pak (p21-activated kinase), along with putative activators of Pak, nck-1/Nck, and ced-10/Rac, regulates...

متن کامل

C. elegans LIN-18 Is a Ryk Ortholog and Functions in Parallel to LIN-17/Frizzled in Wnt Signaling

Wnt proteins are intercellular signals that regulate various aspects of animal development. In Caenorhabditis elegans, mutations in lin-17, a Frizzled-class Wnt receptor, and in lin-18 affect cell fate patterning in the P7.p vulval lineage. We found that lin-18 encodes a member of the Ryk/Derailed family of tyrosine kinase-related receptors, recently found to function as Wnt receptors. Members ...

متن کامل

Mindbomb 1 , an E 3 ubiquitin ligase , forms a complex with RYK to activate Wnt / - catenin signaling Jason

The Wnt family of secreted glycoproteins plays a critical role in developmental processes including axis patterning, cellular proliferation, planar cell polarity, cell migration, cell fate specification, and neuronal development. In adults, Wnt signaling is involved in tissue homeostasis, regeneration, and stem/progenitor cell function. Moreover, elevated or attenuated Wnt signaling is found in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 141 3  شماره 

صفحات  -

تاریخ انتشار 2014